Foundations of Quantum Mechanics

Dr. H. OsborA

Michalmas 1997

L|ATEXed by Paul Metcalfe — comments and correctiongdo23@am ac. uk.



Revision: 2.5
Dat e: 1999-06-06 14:10: 19+01

The following people have maintained these notes.

—date Paul Metcalfe



Contents

Introduction \

1 Basics 1

1.1 Reviewofearlierwork . . . ... .. .. ... ... ... .. ... . 1

1.2 TheDiracFormalism . . . . .. .. ... ... ... ... ...... 3
1.2.1 Continuumbasis .. ... ... ... .. .. ........ 4
1.2.2 Action of operators on wavefunctions . . . . . ... ... .. 5
1.2.3 Momentumspace . . . . . . . . . . 6
1.2.4 Commutingoperators . . . ... .. ... ... ....... 7
1.25 UnitaryOperators. . . . . . . .. . . . i 8
1.2.6 Timedependence . . . .. .. ... . ... ... ... ... 8

2 TheHarmonic Oscillator 9
2.1 Relationto wavefunctions . ... ... ... ... ... . ...... 10
2.2 Morecomments . . . . . . . . ... 11

3 Multiparticle Systems 13

3.1 Combination of physicalsystems. .. . . . ... ... .. ...... 13

3.2 MultiparticleSystems . . . . . . ... 14
3.2.1 Identicalparticles . . . . . . ... ... 14
3.2.2 Spinlessbosons . . ... ... ... ... L. 15
323 Spinjfermions ... ... ... 16

3.3 Two particle states and centreofmass . . . ... .. ... ...... 17

3.4 Observation . . . . . . ... ... 17

4 Perturbation Expansions 19
4.1 Introduction .. . . . . .. 19
4.2 Non-degenerate perturbationtheory . . . . ... ... ... ..... 19
4.3 Degeneracy . . . . . ..t e e 21

5 General theory of angular momentum 23
5.1 Introduction .. . . . . . ... ... 23
5.1.1 Spindparticles. .. ...................... 24
5.1.2 Spinlparticles . . . ... .. ... ... 25
5.1.3 Electrons . . . . ... 25
5.2 Addition of angular momentum. ... . . . ... ... L. 26
5.3 The meaning of quantum mechanics . . . . ... ... ... ..... 27



CONTENTS



| ntroduction

These notes are based on the course “Foundations of Quantum Mechanics” given by
Dr. H. Osborn in Cambridge in the Michaelmas Term 1997. Recommended books are
discussed in the bibliography at the back.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis

Methods Quantum Mechanics

Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.s
Foundations of QM Electrodynamics

Methods of Math. Phys Fluid Dynamics 2

Waves (etc.) Statistical Physics

General Relativity Dynamical Systems
Physiological Fluid Dynamics Bifurcations in Nonlinear Convection
Slow Viscous Flows Turbulence and Self-Similarity
Acoustics Non-Newtonian Fluids
Seismic Waves

They may be downloaded from

http://ww.istari.ucamorg/ maths/ or
http://ww. cam ac. uk/ CanbUni v/ Soci eti es/ ar chi nf notes. ht m

or you can emaisoc- ar chi mnotes@ i st s. cam ac. uk to get a copy of the
sets you require.



Copyright (c) The Archimedeans, Cambridge University.
All rights reserved.

Redistribution and use of these notes in electronic or printed form, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of the electronic files must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in printed form must reproduce the above copyright notice, this
list of conditions and the following disclaimer.

3. All materials derived from these notes must display the following acknowledge-
ment:

This productincludes notes developed by The Archimedeans, Cambridge
University and their contributors.

4. Neither the name of The Archimedeans nor the names of their contributors may
be used to endorse or promote products derived from these notes.

5. Neither these notes nor any derived products may be sold on a for-profit basis,
although a fee may be required for the physical act of copying.

6. You must cause any edited versions to carry prominent notices stating that you
edited them and the date of any change.

THESE NOTES ARE PROVIDED BY THE ARCHIMEDEANS AND CONTRIB-
UTORS"AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE ARCHIMEDEANS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THESE NOTES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.



Chapter 1

The Basics of Quantum
M echanics

Quantum mechanics is viewed as the most remarkable developmg@if ioentury
physics. Its point of view is completely different from classical physics. Its predictions
are often probabilistic.

We will develop the mathematical formalism and some applications. We will em-
phasize vector spaces (to which wavefunctions belong). These vector spaces are some-
times finite-dimensional, but more often infinite dimensional. The pure mathematical
basis for these is in Hilbert Spaces but (fortunately!) no knowledge of this area is
required for this course.

1.1 Review of earlier work

This is abrief review of the salient points of the 1B Quantum Mechanics course. If
you anything here is unfamiliar it is as well to read up on the 1B Quantum Mechanics
course. This section can be omitted by the brave.

A wavefunctiony(z): R® — C is associated with a single particle in three di-
mensions. ¢ represents the state of a physical system for a single particlé. idf
normalised, that is

llI? = / & o =1

then we say thaf®z |+|” is the probability of finding the particle in the infinitesimal
regiond®z (atz).

Superposition Principle

If ¢; andy, are two wavefunctions representing states of a particle, then so is the
linear combinatioru;11 + a2 (a1,a2 € C). This is obviously the statement that
wavefunctions live in a vector spaceyf = a1 (with a # 0) thenty andv)’ represent

the same physical state. 4f andv’ are both normalised them = ¢**. We write

1 ~ e to show that they represent the same physical state.

1



2 CHAPTER 1. BASICS

For two wavefunctiong andi we can define a scalar product

(6,9) = /d% o' € C.

This has various properties which you can investigate at your leisure.

Interpretative Postulate

Given a particle in a state represented by a wavefunatighenceforth “in a state
") then the probability of finding the particle in stageis P = |(¢>,1/})|2 and if the
wavefunctions are normalised therx P < 1. P =11if ¢ ~ ¢.

We wish to define (linear) operators on our vector space — do the obvious thing.
In finite dimensions we can choose a basis and replace an operator with a matrix.

For a complex vector space we can define the Hermitian conjugate of the opéerator
to be the operatad’ satisfying(¢, Ay) = (AT¢, ). If A = AT thenA is Hermitian.

Note that if A is linear then so ist'.

In guantum mechanics dynamical variables (such as energy, momentum or angular
momentum) are represented by (linear) Hermitian operators, the values of the dynam-
ical variables being given by the eigenvalues. For wavefunctidgng, A is usually
a differential operator. For a single particle moving in a poteritiat) we get the
HamiltonianH = —%VQ + V(x). Operators may have either a continuous or dis-
crete spectrum.

If A is Hermitian then the eigenfunctions corresponding to different eigenvalues
are orthogonal. We assume completeness — that any wavefunction can be expanded
as a linear combination of eigenfunctions.

The expectation value fot in a state with wavefunctio is (A),,, defined to be
S lai> = (1, Ay). We define the square deviatidnA? to be (A — (A)y)?)y
which is in general nonzero.

Time dependence

This is governed by the Sabdinger equation

o
ot

where H is the Hamiltonian. H must be Hermitian for the consistency of quantum
mechanics:

th— = Hy,

ho (6,0) = (6, HY) — (H,4) = 0

if H is Hermitian. Thus we can impose the conditian ) = 1 for all time (if ¢ is
normalisable).

If we consider eigenfunctions; of H with eigenvalue$’; we can expand a general
wavefunction as

Y(z,t) = Z aie_zETitwi(x).

If ¢ is normalised then the probability of finding the system with endfgis |ai|2.
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1.2 TheDirac Formalism

This is where we take off into the wild blue yonder, or at least a more abstract form of
guantum mechanics than that previously discussed. The essential structure of quantum
mechanics is based on operators acting on vectors in some vector space. A wavefunc-
tion 1) corresponds to some abstract vedtor, aket vector.|+) represents the state of
some physical system described by the vector space.

If |101) and|vy) are ket vectors thely)) = aq]11) + az|i)2) is a possible ket vector
describing a state — this is the superposition principle again.

We define a dual space bfa vectors(¢| and a scalar produgt|), a complex
numbert For any|«) there corresponds a uniqig| and we requirée|) = (1[¢)*.

We require the scalar product to be linear such ti&t= a1 |¢1) + az|y2) implies
(0lY) = a1(dlPn) + az(dlipz). We see thaty[p) = ai(y1|¢) + a5{y2|¢) and so
(Y] = ai (1] + a3 (.

We introduce linear operatop%|w> = [¢") and we define operators acting on bra
vectors to the leftg| A = (¢/| by requiring(¢/|1)) = (¢|Aly) for all . In general, in
<¢|A|w) A can act either to the right or the left. We define Hufpoint At of A such
that if A[y)) = |¢') then(yp|AT = (¢/|. Ais said to be Hermitian ifi = AT,

If A=a1A; 4 azA, thenA = a3 Al + a3 Al, which can be seen by appealing to
the definitions. We also find the adjoint 54 as follows:

Let BA|yp)) = BJy') = [¢"). Then(y”| = (¢'|B" = (y|AT B! and the result
follows. Also, if (1)|A = (¢/| then|¢') = Af|a).

We have eigenvectord|)) = A|«) and it can be seen in the usual manner that the
eigenvalues of a Hermitian operator are real and the eigenvectors corresponding to two
different eigenvalues are orthogonal.

We assume completeness — that is gfjycan be expanded in terms of the basis ket
vectors|¢) = 3 a; i) whereA|y;) = \; [vi) anda; = (Yi]¢). If [¢b) is normalised
— (¥|v) = 1 — then the expected value dfis (A),, = (1| A|), which is real if A
is Hermitian.

The completeness relation for eigenvectordaan be written a$ = > i) (il
which gives (as before)

=1Jp) = Zm YWiltp).

We can also rewritel = Yo ) Ai(i] and if A; # 0 V5 then we can define
ATV =30 AT (Wl

We now ghoose an orthonormal ba$jgs)} with (n|m) = 4,,,,, and the complete-
ness relatiol = ) |n)(n|. We can thus expana) = " a,|n) with a,, = (n[y)).
We now consider a linear operatd; and thenA|)) = 3=, a,Aln) = 32, al,|m),
with a/,, = (m|A|)) = 3, a,(m|Aln). Further, putting4,,, = (m|AJn) we get
a,, = >, Amnay, and therefore solvingl|y)) = AJ¢) is equivalent to solving the
matrix equatiorda = la. A,,,, is called the matrix representation/fnf We also have
(] =3, ai(n|, withal,* =3 aX Al ., whereAl = = A%  givesthe Hermitian

conjugate matrix. This is the matrix representationiof

lpra ket. Who said that mathematicians have no sense of humour?
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1.2.1 Continuum basis

In the above we have assumed discrete eigenvaluasd normalisable eigenvectors
|;). However, in general, in quantum mechanics operators often have continuous
spectrum — for instance the position operatdn 3 dimensionsx must have eigen-
valuesx for any pointx € R3. There exist eigenvectofg) such thatk|x) = x|x) for
anyx € R3.

As x must be Hermitian we hav|x = x(x|. We define the vector space required
in the Dirac formalism as that spanned|ly.

For any statei)) we can define a wavefunctian(x) = (x|¢).

We also need to find some normalisation criterion, which uses the 3 dimensional
Dirac delta function to gefx|x’) = §%(x — x’). Completeness gives

[ o =1,

We can also recover the ket vector from the wavefunction by
) = 1) = [ dalout)

Also (x|x|¢) = x1(x); the action of the operatsr on a wavefunction is multipli-
cation byx.
Something else reassuring is

Wlo) = Wlil) = / 0B (3 |x) )
- / B ()|

The momentum operatgy is also expected to have continuum eigenvalues. We
can similarly define statgp) which satisfyp|p) = p|p). We can relaté andp using
the commutator, which for two operatafsand B is defined by

{A, B} = AB — BA.
The relationship betweehandp is [;, p;] = +d;;. In one dimensiont, p| = .
We have a useful rule for calculating commutators, that is:
[A,B¢] = [, B¢+ B[Ac].
This can be easily proved simply by expanding the right hand side out. We can use
this to calculatgz, p?].

[,9°] = [&,9]p+ b &, D]
= 2hp.

It is easy to show by induction thét, p"] = nahp™ 1.
We can define an exponential by
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We can evaluatez, e—%} by

and it follows thate—*#* |z) is an eigenvalue of with eigenvaluer + a. Thus we
seee ‘7 x) = |z + a). We can do the same to the bra vectors with the Hermi-
tian conjugate:*+ to get(z + al = <x|e%. Then we also have the normalisation
(' + alz + a) = (2/|x).

We now wish to considefr + a|p) = <m|e% Ip) = e 7 (x|p). Settingz = 0 gives
(alp) = & N, whereN = (0|p) is independent of. We can determin&’ from the
normalisation ofp).

5’ =) = @'lp) = [ da /o) alp)
= |N|2/dae@
= |N[*27h(p' —p)
So, because we are free to choose the phagé,afie can setvV = (%)% and

thus(z|p) = (52:)? e'%*. We coulddefine|p) by

27h

m—/wmmm—@%f/wmﬂi

but we then have to check things like completeness.

1.2.2 Action of operatorson wavefunctions

We recall the definition of the wavefunctiahasy (z) = (z|y). We wish to see what
operators (the position and momentum operators discussed) do to wavefunctions.
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Now (z|Z|) = z{x|p) = z(x), SO the position operator acts on wavefunctions
by multiplication. As for the momentum operator,

(alple5) = / dp (alplp) (p|)
~ [ doptaln)ole)
_ <%> / dppe’ ™ (plw)
S [ v elpoie)
— _m%mw = —zh;—xw(m)-

The commutation relatiofi, p] = +h corresponds tcﬁx, —zh%} = 1h (acting on

P(x)).

1.2.3 Momentum space

lz) — (x) = (z|¢) defines a particular representation of the vector space. It is
sometimes useful to use a momentum representatign,= (p|v). We observe that

/da: (p|z){x|)
<2ﬂh>2/dxe Fab(x).

In momentum space, the operators act differently on wavefunctions. It is easy to
see thatp[ply) = pv(p) and(p||y) = h ;¥ (p).
We convert the Scladinger equation into momentum space. We have the operator

equationd = % + V(&) and we just need to calculate how the potential operates on
the wavefunction.

WV (@)) = / Az (plV (&) ) zl6)
(2

%) / dxe-%wm@m

whereV (p) = 5L [ dze™ % V(z). Thus in momentum space,

H,)(p) /dep P)v®).



1.2. THE DIRAC FORMALISM 7

1.2.4 Commuting operators

Supposed and B are Hermitian an({fl, B} = 0. ThenA and B have simultaneous
eigenvectors.

Proof. Supposefl|1/;> = \|y) and the vector subspaé&g is the span of the eigenvec-
tors of A with eigenvalue\. (If dim Vy > 1 then) is said to be degenerate.)

As A and B commute we know thaxB|y) = AB|y) and soB|y) € Vy. If Xis
non-degenerate the|)) = p|t) for somey. Otherwise we have thak: Vy — V)
and we can therefore find eigenvectorgbihich lie entirely insidel’y. We can label
these a$), i), and we know that

AlX, i) = A, )
BIX, 1) = pI\ o).
0

These may still be degenerate. However we can in principle remove this degener-
acy by adding more commuting operators until each state is uniquely labeled by the
eigenvalues of each common eigenvector. This set of operators is cattwtpkete
commuting set.

Thisisn’'t so odd: for a single particle in 3 dimensions we have the operatpis
andzs. These all commute, so for a single particle with no other degrees of freedom
we can label states uniquely Iy). We also note from this example that a complete
commuting set is not unique, we might just as easily have taken the momentum opera-
tors and labeled states lyy). To ram the pointin more, we could also have taken some
weird combination liket, Zo andps.

For our single particle in 3 dimensions, a natural set of commuting operators in-
volves the angular momentum operaif)r,: X AP, or L; = €ijkT;Pk-

We can find commutation relations betweknand the other operators we know.
These are summarised here, proof is straightforward.

If we have a Hamiltonia] = % + V(]x|) then we can also see thPi, H} =0.

We choose as a commuting sit L2 and Ls and label state§¥, [, m), where the
eigenvalue oL.? is (I + 1) and the eigenvalue df; is m.
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1.2.5 Unitary Operators

An operatotl’ is said to baunitary if UTU = 1, or equivalently7 —* = U'.

Supposé’ is unitary andU|¢) = |¢'), U|¢) = |¢'). Then(¢'| = (¢|Ut and
(@'|Y"y = (¢|1). Thus the scalar product, which is the probability amplitude of finding
the statg¢) given the statéy), is invariant under unitary transformations of states.

For any operatori we can definel’ = UAU'. Then(¢/|A’|¢/) = (¢|AJ¢) and
matrix elements are unchanged under unitary transformations. We also note that if
C = ABthenC’ = A'B'.

The quantum mechanics for the), |4), A, B etc. is the same as fo'), |¢'), A’,

B’ and so on. A unitary transform in quantum mechanics is analogous to a canonical
transformation in dynamics.

Note that ifO is Hermitian theri/ = ¢'© is unitary, ag/t = e =0 = ¢=10,

1.2.6 Timedependence
This is governed by the Sabdinger equation,

o .
hs () = Hlw()

H is the Hamiltonian and we require it to be Hermitian. We can get an explicit
solution of this if & does not depend explicitly on We set|y(t)) = U(t)[(0)),
wherel (t) = e~ "i". As U(t) is unitary,(¢(t)[1(t)) = ($(0)[(0)).

If we measure the expectation dfat timet we get(vy(t)|A|(t)) = a(t). This
description is called the Sabdinger picture. Alternatively we can absorb the time de-
pendence into the operatdrto get the Heisenberg picturg(t) = (1|UT (t) AU (t)]4)).

We write Ay (t) = UT(t)AU(t). In this description the operators are time dependent
(as opposed to the statesl.y (t) is the Heisenberg picture time dependent operator.
Its evolution is governed by

o - . .
tho: An () = | An(). 8],
which is easily proven.

For a Hamiltoniant = 5-p(t)* + V(2(t)) we can get the Heisenberg equations
for the operatorg gy andpy

Snlt) = —pu()
Sbu(t) = V' (in ().

These ought to remind you of something.



Chapter 2

The Harmonic Oscillator

In quantum mechanics there are two basic solvable systems, the harmonic oscillator
and the hydrogen atom. We will examine the quantum harmonic oscillator using al-
gebraic methods. In quantum mechanics the harmonic oscillator is governed by the
Hamiltonian

3 L o 1
H:%p + smw

242

7,

with the condition thafz, p] = «i. We wish to solveH |¢)) = E|+) to find the energy
eigenvalues.

We define a new operatar

= ()

- (32

a anda' are respectively called the annihilation and creation operators. We can
easily obtain the commutation relatida, a'] = 1. It is easy to show that, in terms
of the annihilation and creation operators, the Hamiltorfian= 17w (aa® + afa),
which reduces tdw (afa + 3). Let N = afa. Then{&,]ﬂ —aand {&T,N} = —al.

ThereforeNa = a (]\7 — 1) andNat = af (N + 1).

M M
/N 7N
= =
| +
N—— ~——

Supposé)) is an eigenvector alV with eigenvalue\. Then the commutation rela-
tions give thatVa|«) = (A — 1) ajv) and therefore unlesg:) = 0 it is an eigenvalue
of N with eigenvalue\ — 1. Similarly Naf|y) = (A + 1) at|y).

But for any|y), (1| N|¢) > 0 and equal$ iff a|y) = 0. Now suppose we have an
eigenvalue off, X ¢ {0,1,2,...}. Thendn such that|y)) is an eigenvector o
with eigenvalue\ — n < 0 and so we must have € {0,1,2,...}. Returning to the
Hamiltonian we get energy eigenvalugs = hw (n + 1), the same result as using the
Schiddinger equation for wavefunctions, but with much less effort.

We defingln) = C,a'"|0), whereC,, is such as to maké:|n) = 1. We can take
C, € R, and evaluatéo|a”af"|0) to find C,,.

9
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1= (n|n)

= Cp{0la"a'™(0)

= Cr(0la""aata™"0)
CQ

_C2 (n —1laa’|n — 1)
C? .

_Cf, 1( n—1/N+1jn—-1)

2

Cr%il(n—l—l—l)(n—lm—l)

_ G

S

We thus require”;,, = C\’}; and asCy = 1 we getC,, = (n!) * and so we have

the normalised eigenstate (&) |n) = \/%&T”M (with eigenvaluen). |n) is also an

eigenvector ofd with eigenvalueiw (n + %) The space of states for the harmonic
oscillator is spanned b{jn)}.
We also need to ask if there exists a non-zero s$tatsuch thatf|y)) = 0. Then

0= (vlaat|y) = (G|y) + (Yla'aly) > (W) >0

So there exist no non-zero statés such that'|¢) = 0.

2.1 Relation to wavefunctions

We evaluate
. mw\ 3 h o d
0 = (z|alo) = (2_5) (x + ma) (z]0)
and we see that,(z) = (x|0) satisfies the differential equation

(55 + 5 vote) = o.

1 mw

This (obviously) has solutiogy(z) = Ne~ 2 n * for some normalisation con-
stantN. This is the ground state wavefunction WhICh has en%rfgy.
Foriy (z) = (x|1) = (x|a'|0) we find

)= () (@l - 25l0)
= (5 )%<m—ma>%<x>

_ (ZmT“’> 20 (2).
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2.2 Morecomments
Many harmonic oscillator problems are simplified using the creation and annihilation
operators. It is useful to summarise the action of the annihilation and creation opera-
tors on the basis states:

a'ln) =vn+1ln+1) and an) = vnln — 1).

For example

[N

(mlel) = (5 ) tmla + o)

m

Do
&

1
2

_ (i> (Va (mln— 1) + Va1 (mjn + 1))

2mw
B\ 2
= (%) (\/ﬁ(gmmfl +vn+ 15m,n+1) .

This is non-zero only ifn, = n+ 1. We note that™ contains termé*a’"—*, where
0 < s <randso{m|z"|n) can be non-zeroonly if —r < m <n +r.
2 Ht

It is easy to see that in the Heisenberg pictiufg(t) = e e "% = e "4,
Then using the equations fég (¢t) andpy (¢), we see that

&g (t) =& coswt + ——psinwt.

Also, Hal, (t) = al, (t)(H + hw), so if |¢) is an energy eigenstate with eigenvalue
E then&TH(t)w) is an energy eigenstate with eigenvakie- hw.

1And such problemslways occur in Tripos papers. You have been warned.
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Chapter 3

Multiparticle Systems

3.1 Combination of physical systems

In quantum mechanics each physical system has its own vector space of physical states
and operators, which if Hermitian represent observed quantities.

If we consider two vector spacé§ and V5 with bases{|r):} and {|s)2} with
r=1...dimV; ands = 1...dim V5. We define the tensor produf ® V; as the
vector space spanned by pairs of vectors

{Ir)1]s)2 :r=1...dim Vi, s =1...dim Va}.

We see thatlim(V; ® V) = dim V; dim V5. We also write the basis vectors of
Vi®V; as|r, s). We can define a scalar product@n® V» in terms of the basis vectors:
(r',s'|r,s) = (r'|r)1(s’|s)2. We can see that if|r);} and{|s)2} are orthonormal
bases for their respective vector spaces t{be,n; } is an orthonormal basis féf @ V5.

Suppose41 is an operator ofV; and B, is an operator oV, we can define an
operatord; x B, onV; @ V; by its operation on the basis vectors:

(Al x 32) 7)) = (Al|r>1) (Bz|s>2) .
We write A; x By asA; Bs.
Two harmonic oscillators
We illustrate these comments by example. Suppose
=2 L1082 =12
m

We have two independent vector spabewiith basegn); wheren = 0,1, ... and
a; andd} are creation and annihilation operatorsignand

For the combined system we form the tensor prodgc V» with basis|ny, ns)

and Hamiltonian = 3", H;, S0 H|ny,n) = hw (n + na + 1) |n1,n2). There are
N + 1 ket vectors in theéVt" excited state.

13
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The three dimensional harmonic oscillator follows similarly. In generéllifand
H,, are two independent Hamiltonians which actWdnandV; respectively then the
Hamiltonian for the combined systemis = H, + H, acting onV; @ Va. If {|¢,)}
and {|vs)} are eigenbases fdr; and 1, with energy eigenvalue§E!} and { E2}
respectively then the basis vectdt®),. ;. } for V; ® V» have energie, ; = E! + E2.

3.2 Multiparticle Systems

We have considered single particle systems with stateand wavefunctiong (z) =
(x|y). The states belong to a spakie

Consider anV particle system. We say the states belong{to="H; ® - - - @ Hn
and define a basis of states., )1 (¢, )2 - . . |try ) v Where{|,.,);} is a basis fofH;.

A general staté?) is a linear combination of basis vectors and we can define the
N particle wavefunction a¥ (x1, X2, ...,Xn) = (X1,X2,...,xN|P).

The normalisation condition is

(U|V) = /d%l APy |W(x1,%xg,...,xy)]P =1 ifnormalised.

We can interpreti®z; ... d%zy |¥(x1, s, ...,xy)|> as the probability density
that particles is in the volume element®z; at x;. We can obtain the probability
density for one particle by integrating out all the otlxgis.

For time evolution we get the equatim%|\11> = H|W), whereH is an operator
onHY.

If the particles do not interact then

N
=Y
=1

whereH,; acts orfH; but leaved; alone forj # i. We have energy eigenstates in each
H; such thatH; ¢, ); = Er|1y); and so|¥) = |1, )1|try)2 - .. |¥ry ) v IS @N energy
eigenstate with energf,, +--- + E,. .

3.2.1 Identical particles

There are many such cases, for instance multielectron atoms. We will concentrate on
two identical particles.

“Identical” means that physical quantities are be invariant under interchange of
particles. For instance if we havé = H(%x1,P1,%2,P2) then this must equal the
permuted Hamiltonia# (x4, p2, X1, P1) if we have identical particles. We introduce
U such that

-1 -1

=i
b3
[
Il
>
=
S
Il
>

X2

f’zﬁfl

1
IﬁlUﬁ1

2 1

<
|
o>
=
Il
o>

2 1-

We should also hav& HU~! = H and more generally ifi; is an operator on
particle 1 therl/ A, U~ is the corresponding operator on particle 2 (and vice versa).
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Note that if| ) is an energy eigenstate &f then so ig/|¥). ClearlylU’? = 1 and we
requireU to be unitary, which implies thdf is Hermitian.

In quantum mechanics we requjfe) and{/|¥) to be the same states (for identical
particles). This implies thalt/|¥) = X\|¥) and the requiremerit® = 1 gives that
A = %1. In terms of wavefunctions this means tHatk;, x2) = £ U (X2, %1). If we
have a plus sign then the particles are bosons (which have integral spin) and if a minus
sign then the particles are fermions (which have spi, . ..).!

The generalisation t&v identical particles is reasonably obvious. lfeg- inter-
change particlesand;. ThenlU;; HU;;' = H for all pairs(i, ).

The same physical requirement as before gives us()tj;aw = +|U) for all pairs
(1, 7).

If we have bosons (plus sign) then in terms of wavefunctions we must have
U(X1,...,XN) =Y (Xpyy .- Xpy ),
where(py,...,pn) is @ permutation ofl, ..., N). If we have fermions then
U(Xy,...,XN8) = AU (Xpy s .-, Kpy )s

where) = +1 if we have an even permutationdf, . .., N') and—1 if we have an odd
permutation.

Remark for pure mathematicians. 1 and{=+1} are the two possible representations
of the permutation group in one dimension.

3.2.2 Spinless bosons

(Which means that the only variables for a single particlesand p.) Suppose

we have two identical non-interacting bosons. THén= H; + H, and we have
ISI1|1/J,,>Z- = E,.|¢,);. The general space with two particlesh§ ® H2 which has

a basis{|yy)1|ws)2}, but as the particles are identical the two particle state space is
(H1 ® H2)s where we restrict to symmetric combinations of the basis vectors. That
is, a basis for this in terms of the basegf andH;, is

{ ez 5 (erhala)a + [alird) 7 # s
The corresponding wavefunctions are
wT(Xl)wT‘(XQ) and % (wT(Xl)ws(XZ) + %(Xl)%(m))

and the corresponding eigenvaluesaki andE,. + E;. The factor ob—2 just ensures
normalisation and

% (1<¢W|2<ws/| + 1(%/ |2<'L/)T’ |) % (|¢r)1|¢s>2 + W&)ll%)z)

evaluates t@,, 55 + 50,75 R
For N spinless bosons withl = >~ H; we get

ﬁ (|t )1 - - - [ty ) N + permutations theredfif r; # r;

1Spin will be studied later in the course.
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3.2.3 Spin 1 fermions

In this case (which covers electrons, for example) a single particle state (or wavefunc-
tion) depends on an additional discrete variablel'he wavefunctions are(x, s) or

15(x). The space of states for a single electton= L?*(R?) @ C? has a basis of the
form |x)|s) = |x, s) and the wavefunctions can be writtén(x) = (x, s[¢)). A basis

of wavefunctions iy, (x, s) = ¥ (x)x,(s)}, wherer and\ are labels for the basis.

A takes two values and it will later be seen to be natural to )}a&ei%.

xa(1)
xA(2)

Note thatxi,xA = Jan-

We can also think of the vectyr, = ( ) in which case two possible basis

0
1)
The scalar productis defined in the obvious Wéy: v/ |dra) = (Vpr [100) (X0 XA ),

which equal®,.,-d - if the initial basis states are orthonormal.

Thetwo electron wavefunction i¥ (x4, s1; X2, s2) and under the particle exchange
operatorU we must havel (x1, s1; X2, s2) — —WU(Xa, s2;X1,51). The two particle
states belong to the antisymmetric combinatisfi ® Hs) 4.

For N electrons the obvious thing can be done.

vectors are<(1)> and

Basisfor symmetric or antisymmetric 2 particle spin states
There is only one antisymmetric basis state

Xalans2) = 5 (g (30 (52) = Xy )

1 1
2 2

(52):)
and three symmetric possibilities:

X (51X, (52)

1
2

Xs(s152) = § Z5 (X, (510X (52) + Xy (s1)xy (s2)-) 31 # 3o

X_1(s1)x_1(s2).
2 2
We can now examine two non-interacting electrons, iith= H, + H» and take

H; independent of spin. The single particle states/érgxs).

The two electron states live {{H; ® H2) 4, which has a basis

|1/)T>1|1/)T>2|XA>3
iQ () 1lbs)s + [s)alon)2) xa)i 7 # s
1

V2

with energy level2 F,. (one spin state) an#, + F, (one antisymmetric spin state
and three symmetric spin states).

We thus obtain the Pauli exclusion principle: no two electrons can occupy the same
state (taking account of spin).

As an example we can take the helium atom with Hamiltonian

N

([be)1ls)e = [¥s)1lbr)2) [Xs); T # s,

i p?  p3 2¢? 2¢? e?

2m 2m_47T60|)A(1| _47T60|)A(2| +47T60|)A(1—)A(2 '
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If we neglect the interaction term we can analyse this as two hydrogen atoms and

glue the results back together as above. The hydrogen atom (with a nuclear&arge
2 . . .
haskE, = % so we get a ground state for the helium atom with eneifgy with

no degeneracy and a first excited state with enéfgy- E> with a degeneracy of four.
Hopefully these bear some relation to the results obtained by taking the interaction into
account.

3.3 Two particle states and centre of mass

Suppose we have a Hamiltoni&h = % + % + V(X1 — %X2) defined or{2. We can
separate out the centre of mass motion by letting

P

p1 + P2 p=
~ 1, . R . . .
X:§(X1+X2) X =% — Xo.

Then {f(i, Pj} = whdyj, [#4,p;] = 1hd;; andX, P andx, p commute respectively.

We can rewrite the Hamiltonian & = £ 4/, h = 2~ 4V (), whereM = 2m and
we can decomposk? into Hew @ Hint. Hew is acted on byX andP and has wave-
functions¢(X). Hint is acted on by, p and any spin operators. It has wavefunctions
h(x, s1,52). We take wavefunction® (x1, s1; X2, s2) = (X)) (x, s1, s2) in H2.

This simplifies the Sctadinger equation, we can just hayéX) = e and then
E = % + Eint. We thus need only to solve the one patrticle equaftiﬁ)n: Eintt.

Under the particle exchange operatbwe have

w(xa S1, 52) = w(_xv 52, 51) = iw(X, S1, SQ);
with a plus sign for bosons and a minus sign for fermions. In the spinless case then

P(x) = P(=x).

If we have a potentidl/ (|x|) then we may separate variables to get

%) RlbxDx(or.s

I

(%, 81,82) = Yl(

with Y] (—i) = (-1)'y (ﬁ) For spinless bosons we therefore requicebe even.

x|

3.4 Observation

Consider the tensor product of two systefisandH,. A general statél) in H; @ Hs
can be written as

|T) = Z aij|vi)1|dg)2
4,

with |¢;)1 € Hy and|¢;)2 € Hs assumed orthonormal bases for their respective vector
spaces.
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Suppose we make a measurement on the first system leaving the second system
unchanged, and find the first system in a state:. Then(y;|¥) = >_; a;j|;)2,
which we write asd;|¢)2, where|¢)s is a normalised state of the second system. We
interpret|Ai|2 as the probability of finding system 1 in stétg),. After measurement
systen® is in a statg¢)s.

If a;; = Aid;; (NO summation) therd, = A\; and measurement of system 1|ag),
determines system 2 to be in stafe)s.



Chapter 4

Perturbation Expansions

4.1 Introduction

Most problems in quantum mechanics are not exactly solvable and it it necessary to
find approximate answers to them. The simplest method is a perturbation expansion.
We write H = Hy+ H’ whereH, describes a solvable system with known eigenvalues
and eigenvectors, and’ is in some sense small.

We write ISI()\) = Hy, + M\H' and expand the eigenvalues and eigenvectors in
powers ofA. Finally we set\ = 1 to get the result. Note that we do not necessarily
have to introduce\; the problem may have some small parameter which we can use.
This theory can be applied to the time dependent problem but here we will only discuss
the time independent Satatinger equation.

4.2 Non-degenerate perturbation theory

Suppose thaf|n) = e,|n) forn = 0,1,.... We thus assume discrete energy levels
and we assume further that the energy levels are non-degenerate. We also#équire
to be sufficiently non-singular to make a power series expansion possible.

We have the equatiofl (\)|¢,(\)) = E,(\)|¢n(N)). We suppose thak,, (\)
tends toe,, asA — 0 and|y,(\)) — |n) asA — 0. We pose the power series
expansions

En(N) = e, + AEW + A2EP) 4
[ (X)) = Nin) + Alp) + ...,

substitute into the Schdinger equation and require it to be satisfied at each power
of \. The normalisation constan is easily seen to be+ O(\?). TheO(1) equation
is automatically satisfied and ti®\) equation is

HolyiP) + H'|n) = BV |n) + eal V).

Note that we can always replapganl)) with |w(1)> + a|n) and leave this equation
unchanged. We can therefore impose the conqumzﬁll)> = 0. If we apply (n| to

19
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this equation we geE,(ll) = <n|ﬁ’|n> — the first order perturbation in energy. If we
apply (r| wherer # n we see that

() = -

€r — €n
and therefore
Wy X P H n)
W)n > - ; € — €n .

Note that we are justified in these divisions as we have assumed that the eigenvalues
are non-degenerate. On doing the same thing t@the) equation we see that

B2 = (nlH'|0}))

ol

€r — €
rn T n

This procedure is valid i, — ¢, is not very small whe@r|I:I’|n) # 0.
Using these results we can see thaf, () = (1 (A)|H'[¢n())) and

o 1 .
5Iwn(k)> =- ; mwr(k)ﬂwr@\)u{ [¥n(N))-

Also 2 = I’ and so

82

.0
oz En (V) = 20 (VA 55 [n(V)).

Example: harmonic oscillator

Considerdl = 2= + Imw?#? + Mmw?i?, which can be viewed af, + H’, where

2m

H, is the plain vanilla quantum harmonic oscillator Hamiltonian.
Calculating the matrix elements|22|n) required is an extended exercise in ma-
nipulations of the annihilation and creation operators and is omitted. The results are
B = (n+ )
1 1
E7(1,2) = —57%; <n+ 5) .

We thus get the perturbation expansion fjy
E), =hw(n+3) (1+/\— A—22+(9(>\3)).

This system can also be solved exactly to giije = hw (n + 3) v/1 + 2X which
agrees with the perturbation expansion.
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4.3 Degeneracy

The method given here breaks down,if= ¢, for » # n. Perturbation theory can be
extended to the degenerate case, but we will consider only the first order shift in
We suppose that the statps s), s = 1...N,, have the same energy. N, is the
degeneracy of this energy level.

As before we pose a Hamiltonidid = H, + AH’ such thatH|n, s) = €,|n, s)
and look for stateg)(\)) with energyE(\) — ¢, asA — 0.

The difference with the previous method is that we exparid)) as a power series
in A in the basis of eigenvectors of Hy. Thatis

[B(N) =Y [, s)as + AlpM).

S

As thea, are arbitrary we can impose the conditignss|y (M) = 0 for eachs and
n. We thus have to solVE |1)()\)) = E(\)|()\)) with E(\) = €, + A\EM). If we take
the O(\) equation and applyn, r| to it we get

> auln,r|H'n,s) = a, B

which is a matrix eigenvalue problem. Thus the first order perturbations gre

the eigenvalues of the matri, 7| H'|n, s). If all the eigenvalues are distinct then

the perturbation “lifts the degeneracy”. It is convenient for the purpose of calculation

to choose a basis for the space spanned by the degenerate eigenvectors in which this
matrix is “as diagonal as possiblé”.

1Don't ask...
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Chapter 5

General theory of angular
momentum

For a particle with position and momentum operatorandp with the commutation
relations[z;, p;] = thd;; we defineL = x A p. It can be seen thdt is Hermitian and

it is easy to shovx{ii, E]} = aheiji L.

5.1 Introduction

We want to find out if there are other Hermitian operatafsvhich satisfy this com-
mutation relatior. We ask on what space of states can this algebra of operators be
realised, or alternatively, what are the representations?

We want

[Ji, JJ] = Zﬁijkjk.

We will choose one component dfwhose eigenvalues label the states. In accor-
dance with convention we chooge. Note that[JQ, Jg} = 0, so we can simultaneously
diagonaliseJ? and.J;. Denote the normalised eigenbasis|hy.), so that

2 ) = MAp) and J3|\ p) = pl p).

We know that\ > 0 sinceJ? is the sum of the squares of Hermitian operators.
Now defineJ; = J; £ 1J5. These are not Hermitian, bui =J_.
It will be useful to note that

[Jx, J3] = £ Jx
[y, J ] = 2J3
=L+ JJp)+ J§
=JiJ — T3+ J2

=J Jy + 3+ Jz.

1Ther is taken outside - you can put it back in if you want, it is inessential but may or may not appear in
exam questions. Since we are now grown up we will omit the hats if they do not add to clarity.

23
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Proof of this is immediate.
Using the[.Jy, J3] relation we havels J. = JyJ3 + J3, so that

J3Jx|Ap) = (n£1) Jx|A p)

andJy|A u) is an eigenstate of; with eigenvalue: & 1. By similar artifice we
can see thaf |\ p) is an eigenstate af? with eigenvalue\.
Now evaluate the norm of|A 1), which is

Nl Tz el ) = X — p® F > 0.

We can now define statés (¢ +n)) forn =0,1,2,.... We can pin them down
more by noting that — x2 2, > 0 for positive norms. However the formulae we
have are, given\, negative for sufficiently largg:| and so to avoid this we must have
Umax = j such that/ |7) = 0: hence\ — j2 — j = 0 and so\ = j(j + 1).

We can perform a similar trick with/_; there must existimin = —j’ such that
J_| =4y = 0: thush = j'( + 1). Soj’ = jand as—j' = —j = j — n for some
ne€{0,1,2,...} wehavej =0,3,1,3,....

In summary the states can be labelled pyn) such that

I2)jm) = j(j + 1)lj m)
J3|j m) = mljm)

1
Telim) = (GFm) (G =m+ D) jm+1)

withm € {—j,—j+1,...,5— 1,5} andj € {0,1,1,3,...}. Thereare; + 1
states with differenin for the samej. |j m) is the standard basis of the angular
momentum states.

We have obtained a representation of the algebra labellgdlby:.J = L = x A p
we must haveg an integer. X

Recall that if we haved we can define a matridy/\ by A|X\) = >, |X)Axa.
Note that(BA),,, = >_, ByvuAux. Givenj, we have(Js),, ., = mdmm and
(J£) i = V(G Fm) (G £m+1)6ms ma1, giving us(2j + 1) x (2j + 1) matrices
satisfying the three commutation relatidds, J. ] = +J3 and[J;, J_] = 2J5.

If J are angular momentum operators which act on a vector Spaaed we have
|) € V such thatJs|y) = kfy) and J4|¢) = 0 thene is a state with angular
momentumj = k. The other states are given B¢ |¢), 1 < n < 2k. The conditions
also giveJ?|y)) = k (k + 1) [¢)

- 1 -
5.1.1 Spin ; particles
This is the simplest non-trivial case. We hgve: % and a two dimensional state space

with a basi§1 1) and|3 — 1). We have the relationgs|1 + 1) = +11 +1)and

)
)

Jil3

A

0 J_|
3 3) J_|

N[—= D=
N[—=

N[—= D=
~ ~—
o
S o=
|
N[—=
~

N[ =
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It is convenient to introduce explicit matricessuch that
It m) =3 13m0

The matricesr are2 x 2 matrices (called the Pauli spin matrices). Explicitly, they

are
(0 2 (00 (10
+=\o o “=\2 0 ?7\o 1
1 0 1 —1 0 —
01—§(U++U_)—(1 O) 02—7(04_—0_)—(2 0).

Note thatr? = 02 = 02 = 1 ando’ = . These satisfy the commutation relations
[0i,05] = 2ie5,0k (a slightly modified angular momentum commutation relation)
and we also have,os = 107 (and the relations obtained by cyclic permutation), so
oi0j + 050 = 26;;1. Thus ifn is a unit vector we havezr.ﬁ)2 = 1 and we see that
o.n has eigenvalues1.

We define the angular momentum matrises ;1o and sos® = 2121,

The basis states apeL = (é) andx_% = (?)
512 Spin 1 particles

We apply the theory as above to get

0
V2 S3

Il
o O =
o O O
jen)

0 V2
S+: 0 0
0 0

andS_ = S1.

5.1.3 Electrons

Electrons are particles with intrinsic sp&n The angular momentuth=xAp +s, s
are the spin operators for sp&n

The basic operators for an electron &r¢p ands. We can represent these operators
by their action on two component wavefunctions:

P(x) = Z UA(X) X

A=+1

In this basisk — x, p — —hAV ands — ga. All other operators are constructed

in terms of these, for instance we may have a Hamiltonian

£ 2
_p
H= o9m +V(x)+Ux)o.L

whereLL = X A p.
If V-andU depend only otix| then[J, H] = 0.
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5.2 Addition of angular momentum

Consider two independent angular momentum operdtdtsandJ(?) with J() acting
on some spack (") andV (") having spinj, for r = 1, 2.

We now define an angular momentdnacting onV ) @ V2 by J = J1) 4 J(2),
Using the commutation relations faf") we can gefJ;, J;] = 1€ Jx.-

We want to construct statég M) forming a standard angular momentum basis,
that is such that:

J3|J M) = M|J M)
Jx|J M) = Ny |J M £1)

with Nij = /(JFM)(J+ M +1). We look for states i/ which satisfy
Ji|J Jy =0andJs|J J) = J|J J). The maximum value of we can getig + jq;
and|j1 + j2 j1 + j2) = |91 J1)1l72 J2)2- Thendy|j1 + j2 j1 + j2) = 0. Similarly this
is an eigenvector of; with eigenvalugj; + j2). We can now apply_ repeatedly to
form all the|.J M) states. Applying/_ we get

|J M —1) = alji j1 — 1)1lj2 jo)2 + Blj1 ji)1lj2 j2 — 1)e.

The coefficentsy and3 can be determined from the coeffices,, and we must
havea? + 3% = 1. If we choosg) a state orthogonal to this;

) = =Blj1 j1 — D)1lj2 j2)2 + aljr ji)1ljz j2 — 1.

Js|1) can be computed and it shows tha} is an eigenvector of; with eigenvalue
fl(jl + jo — 1). Now

0= (&ljr +J2 j1 +j2 — 1) o< (W[J-|j1 + J2 j1 + ja)
and so(y|J_|¢) = 0 for all stated¢) in V. ThusJ;|¢) = 0 and
V) =lj1 +je—1j1+j2—1).

We can then construct the statg¢s+ jo — 1 M) by repeatedly applying_.
For eachJ such thatj; — j2| < J < ji + j2 we can construct a staté J). We
define the Clebsch-Gordan coefficiefis m, j2 mz|J M), and so

[T M) =" (j1ma joma|J M)|jr ma)|ja ma).

mi,msa

The Clebsch-Gordan coefficients are nonzero only whes mq + ms.
We can check the number of states;

Jit72 Jit72
Soerrn= > {u+-r =i+ @b+,

J=|j1—72] J=|j1—j2]
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Electrons

Electrons have spié and we can represent their spin states \M'm% (s). Using this
notation we see that two electrons can form a symmetric spin 1 triplet

(s2)
Xm (51,52) = { 75 (X%(Sl)x_%(&) + X_%(Sl)x;(sz))

2

and an antisymmetric spin 0 singlet;

Xo(s1,52) = % (X%(Sl)Xfé(@) - X7%(51)X%(52)) :

5.3 Themeaning of quantum mechanics

Quantum mechanics deals in probabilities, whereas classical mechanics is determin-
istic if we have complete information. If we have incomplete information classical
mechanics is also probabilistic.

Inspired by this we ask if there can be “hidden variables” in quantum mechanics
such that the theory is deterministic. Assuming that local effects have local causes, this
is not possible.

We will take a spin example to show this. Consider a spiparticle, with two
spin states!) and||) which are eigenvectors df; = Zo3. If we choose to use two
component vectors we have

(1 (0

Supposen = (sin 6, 0, cos #) (a unit vector) and let us find the eigenvectors of

on = [ 6 sind

7 \sin@ —cosf)’

As (a.n)2 = 1 we must have eigenvaluesl and an inspired guess givgs ,, and

X|.n @S
_ 0 8 — _ain 8 0
Xin = €08 3X; +singx) and x| ,=—singx; +cosgx;.

Thus (reverting to ket vector notation) if an electron is in a stitéhen the prob-
ability of finding it in a statg, n) is cos? g and the probability of finding it in a state
||, n) is sin? g.

Now, suppose we have two electrons in a gpginglet state;

1
|®) = 7 {Mlb2 = [DalT)2} -

Then the probability of finding electron 1 with spin up—éisand after making this
measurement electron 2 must be spin down. Similarly, if we find electron 1 with spin
down (probability% again) then electron 2 must have spin up. More generally, suppose
we measure electron 1's spin along directionThen we see that the probability for
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electron 1 to have spin up in directien(aligned) is% and then electron 2 must be in
the statd], n)o.

If we have two electrons (say electron 1 and electron 2) in a spin 0 state we may
physically separate them and consider independent experiments on them.

We will consider three directions as sketched. For electron 1 there are three vari-
ables which we may measure (in separate experimeﬁﬁ?);: +1, s = +1 and

S,(ﬁ) = +1. We can also do this for electron 2.

We see that if we find electron 1 h&§" = 1 then electron 2 has{? = —1 (etc.).

If there exists an underlying deterministic theory then we could expect some prob-
ability distributionp for this set of experiments;

0< p(S;D, S s g2) g2), 59) <1

which is nonzero only i5§;) = — c(,i,a and

dirn
> p({sh) =1.
{s}

Bell inequality

Suppose we have a probability distributiptu, b, ¢) with a,b,¢c = +1. We define
partial probabilitieg,. = Y p(a, b, ¢) and similarly forp,. andp,,. Then

pr(17 _1) = p(17 1) _1) +p(_17 1) _1)
< pab(]-; 1) +pac(_17 _1)

Applying this to the two electron system we get

7?(553) 1,50 = 1) < P(Sél) — 1,50 = —1) +7>(5;1> —1,8@ = 1) .
We can calculate these probabilities from quantum mechanics
P(SD =1,8@ = 1) =PV = 1,80 =1) = cos? §
P(Sél) =-1,8% = 1) = cos? # and
P8 =1,5 = 1) = sin? 4.

The Bell inequality givesin® £ < cos? ¢ + cos® 242 which is not in general true.
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